Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Lymphat Res Biol ; 22(2): 106-111, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38407896

RESUMEN

Background: Lipedema is a progressive condition involving excessive deposition of subcutaneous adipose tissue, predominantly in the lower limbs, which severely compromises quality of life. Despite the impact of lipedema, its molecular and genetic bases are poorly understood, making diagnosis and treatment difficult. Historical evaluation of individuals with lipedema indicates a positive family history in 60%-80% of cases; however, genetic investigation of larger family cohorts is required. Here, we report the largest family-based sequencing study to date, aimed at identifying genetic changes that contribute to lipedema. Methods and Results: DNA samples from 31 individuals from 9 lipedema families were analyzed to reveal genetic variants predicted to alter protein function, yielding candidate variants in 469 genes. We did not identify any individual genes that contained likely disease-causing variants across all participating families. However, gene ontology analysis highlighted vasopressin receptor activity, microfibril binding, and patched binding as statistically significantly overrepresented categories for the set of candidate variants. Conclusions: Our study suggests that lipedema is not caused by a single exomic genetic factor, providing support for the hypothesis of genetic heterogeneity in the etiology of lipedema. As the largest study of its kind in the lipedema field, the results advance our understanding of the disease and provide a roadmap for future research aimed at improving the lives of those affected by lipedema.


Asunto(s)
Lipedema , Humanos , Lipedema/diagnóstico , Calidad de Vida , Grasa Subcutánea , Diagnóstico Diferencial
2.
Plast Reconstr Surg Glob Open ; 12(1): e5547, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38268719

RESUMEN

Background: Lymphedema is common after lymphatic damage in cancer treatment, with negative impacts on function and quality of life. Evidence suggests that blood vessel microvasculature is sensitive to irradiation and trauma; however, despite knowledge regarding dedicated mural blood supply to arteries and veins (vasa vasorum), equivalent blood vessels supplying lymphatics have not been characterized. We studied collecting lymphatics for dedicated mural blood vessels in our series of 500 lymphaticovenous anastomosis procedures for lymphedema, and equivalent controls. Methods: Microscopic images of lymphatics from lymphedema and control patients were analyzed for lymphatic wall vascular density. Collecting lymphatics from 20 patients with lymphedema and 10 control patients were sampled for more detailed analysis (podoplanin immunostaining, light/confocal microscopy, microcomputed tomography, and transmission electron microscopy) to assess lymphatic wall ultrastructure and blood supply. Results: Analysis revealed elaborate, dense blood microvessel networks associating with lymphatic walls in lymphedema patients and smaller equivalent vessels in controls. These vasa vasora or "arteria lymphatica" were supplied by regular axial blood vessels, parallel to lymphatic microperforators linking dermal and collecting lymphatics. Lymphatic walls were thicker in lymphedema patients than controls, with immunohistochemistry, computed tomography, transmission electron microscopy, and confocal microscopy characterizing abnormal blood vessels (altered appearance, thickened walls, elastin loss, narrow lumina, and fewer red blood cells) on these lymphatic walls. Conclusions: Dedicated blood vessels on lymphatics are significantly altered in lymphedema. A better understanding of the role of these vessels may reveal mechanistic clues into lymphedema pathophysiology and technical aspects of lymphedema microsurgery, and suggest potential novel therapeutic targets.

3.
Front Pharmacol ; 14: 1152314, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37188266

RESUMEN

Introduction: Surgery and radiotherapy are key cancer treatments and the leading causes of damage to the lymphatics, a vascular network critical to fluid homeostasis and immunity. The clinical manifestation of this damage constitutes a devastating side-effect of cancer treatment, known as lymphoedema. Lymphoedema is a chronic condition evolving from the accumulation of interstitial fluid due to impaired drainage via the lymphatics and is recognised to contribute significant morbidity to patients who survive their cancer. Nevertheless, the molecular mechanisms underlying the damage inflicted on lymphatic vessels, and particularly the lymphatic endothelial cells (LEC) that constitute them, by these treatment modalities, remain poorly understood. Methods: We used a combination of cell based assays, biochemistry and animal models of lymphatic injury to examine the molecular mechanisms behind LEC injury and the subsequent effects on lymphatic vessels, particularly the role of the VEGF-C/VEGF-D/VEGFR-3 lymphangiogenic signalling pathway, in lymphatic injury underpinning the development of lymphoedema. Results: We demonstrate that radiotherapy selectively impairs key LEC functions needed for new lymphatic vessel growth (lymphangiogenesis). This effect is mediated by attenuation of VEGFR-3 signalling and downstream signalling cascades. VEGFR-3 protein levels were downregulated in LEC that were exposed to radiation, and LEC were therefore selectively less responsive to VEGF-C and VEGF-D. These findings were validated in our animal models of radiation and surgical injury. Discussion: Our data provide mechanistic insight into injury sustained by LEC and lymphatics during surgical and radiotherapy cancer treatments and underscore the need for alternative non-VEGF-C/VEGFR-3-based therapies to treat lymphoedema.

4.
PLoS Pathog ; 19(1): e1010753, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36689549

RESUMEN

Kaposi's sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), a hyperplasia consisting of enlarged malformed vasculature and spindle-shaped cells, the main proliferative component of KS. While spindle cells express markers of lymphatic and blood endothelium, the origin of spindle cells is unknown. Endothelial precursor cells have been proposed as the source of spindle cells. We previously identified two types of circulating endothelial colony forming cells (ECFCs), ones that expressed markers of blood endothelium and ones that expressed markers of lymphatic endothelium. Here we examined both blood and lymphatic ECFCs infected with KSHV. Lymphatic ECFCs are significantly more susceptible to KSHV infection than the blood ECFCs and maintain the viral episomes during passage in culture while the blood ECFCs lose the viral episome. Only the KSHV-infected lymphatic ECFCs (K-ECFCLY) grew to small multicellular colonies in soft agar whereas the infected blood ECFCs and all uninfected ECFCs failed to proliferate. The K-ECFCLYs express high levels of SOX18, which supported the maintenance of high copy number of KSHV genomes. When implanted subcutaneously into NSG mice, the K-ECFCLYs persisted in vivo and recapitulated the phenotype of KS tumor cells with high number of viral genome copies and spindling morphology. These spindle cell hallmarks were significantly reduced when mice were treated with SOX18 inhibitor, SM4. These data suggest that KSHV-infected lymphatic ECFCs can be utilized as a KSHV infection model for in vivo translational studies to test novel inhibitors representing potential treatment modalities for KS.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Animales , Ratones , Herpesvirus Humano 8/genética , Células Endoteliales , Endotelio Vascular/patología
6.
Data Brief ; 41: 107828, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35127999

RESUMEN

Radiotherapy injury to cells of the skin and subcutaneous tissue is an inevitable consequence of external beam radiation for treatment of cancer. This sublethal injury to normal tissues plays a significant role in the development of fibrosis, lymphedema, impaired wound healing, and recurrent infections. To elucidate the transcriptional changes that occur in cells of the skin and soft tissues after radiotherapy injury, we performed genome-wide RNA-sequencing comparing irradiated cells (10Gy) with non-irradiated (0Gy) controls in normal human dermal fibroblasts, normal human keratinocytes, human microvascular endothelial cells, human dermal lymphatic endothelial cells, pericytes and adipose derived stem cell populations. These data are publicly available from the Gene Expression Omnibus database (accession number GSE184119). Further insights can be gained by comparing the mRNA signatures arising from radiation injury derived from these data to publicly available signatures from other studies involving similar or different tissue types. These global targets hold potential for manipulation to mitigate radiotherapy soft tissue injury.

7.
Int J Obes (Lond) ; 46(3): 502-514, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34764426

RESUMEN

OBJECTIVES: Lipedema, a poorly understood chronic disease of adipose hyper-deposition, is often mistaken for obesity and causes significant impairment to mobility and quality-of-life. To identify molecular mechanisms underpinning lipedema, we employed comprehensive omics-based comparative analyses of whole tissue, adipocyte precursors (adipose-derived stem cells (ADSCs)), and adipocytes from patients with or without lipedema. METHODS: We compared whole-tissues, ADSCs, and adipocytes from body mass index-matched lipedema (n = 14) and unaffected (n = 10) patients using comprehensive global lipidomic and metabolomic analyses, transcriptional profiling, and functional assays. RESULTS: Transcriptional profiling revealed >4400 significant differences in lipedema tissue, with altered levels of mRNAs involved in critical signaling and cell function-regulating pathways (e.g., lipid metabolism and cell-cycle/proliferation). Functional assays showed accelerated ADSC proliferation and differentiation in lipedema. Profiling lipedema adipocytes revealed >900 changes in lipid composition and >600 differentially altered metabolites. Transcriptional profiling of lipedema ADSCs and non-lipedema ADSCs revealed significant differential expression of >3400 genes including some involved in extracellular matrix and cell-cycle/proliferation signaling pathways. One upregulated gene in lipedema ADSCs, Bub1, encodes a cell-cycle regulator, central to the kinetochore complex, which regulates several histone proteins involved in cell proliferation. Downstream signaling analysis of lipedema ADSCs demonstrated enhanced activation of histone H2A, a key cell proliferation driver and Bub1 target. Critically, hyperproliferation exhibited by lipedema ADSCs was inhibited by the small molecule Bub1 inhibitor 2OH-BNPP1 and by CRISPR/Cas9-mediated Bub1 gene depletion. CONCLUSION: We found significant differences in gene expression, and lipid and metabolite profiles, in tissue, ADSCs, and adipocytes from lipedema patients compared to non-affected controls. Functional assays demonstrated that dysregulated Bub1 signaling drives increased proliferation of lipedema ADSCs, suggesting a potential mechanism for enhanced adipogenesis in lipedema. Importantly, our characterization of signaling networks driving lipedema identifies potential molecular targets, including Bub1, for novel lipedema therapeutics.


Asunto(s)
Lipedema , Adipocitos/metabolismo , Adipogénesis/genética , Tejido Adiposo/metabolismo , Diferenciación Celular/fisiología , Humanos , Lipedema/genética , Lípidos
8.
J Clin Invest ; 132(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34874911

RESUMEN

Propranolol and atenolol, current therapies for problematic infantile hemangioma (IH), are composed of R(+) and S(-) enantiomers: the R(+) enantiomer is largely devoid of beta blocker activity. We investigated the effect of R(+) enantiomers of propranolol and atenolol on the formation of IH-like blood vessels from hemangioma stem cells (HemSCs) in a murine xenograft model. Both R(+) enantiomers inhibited HemSC vessel formation in vivo. In vitro, similar to R(+) propranolol, both atenolol and its R(+) enantiomer inhibited HemSC to endothelial cell differentiation. As our previous work implicated the transcription factor sex-determining region Y (SRY) box transcription factor 18 (SOX18) in propranolol-mediated inhibition of HemSC to endothelial differentiation, we tested in parallel a known SOX18 small-molecule inhibitor (Sm4) and show that this compound inhibited HemSC vessel formation in vivo with efficacy similar to that seen with the R(+) enantiomers. We next examined how R(+) propranolol alters SOX18 transcriptional activity. Using a suite of biochemical, biophysical, and quantitative molecular imaging assays, we show that R(+) propranolol directly interfered with SOX18 target gene trans-activation, disrupted SOX18-chromatin binding dynamics, and reduced SOX18 dimer formation. We propose that the R(+) enantiomers of widely used beta blockers could be repurposed to increase the efficiency of current IH treatment and lower adverse associated side effects.


Asunto(s)
Atenolol/farmacología , Hemangioma , Células Madre Neoplásicas/metabolismo , Neovascularización Patológica , Propranolol/farmacología , Animales , Hemangioma/irrigación sanguínea , Hemangioma/tratamiento farmacológico , Hemangioma/metabolismo , Humanos , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Plast Reconstr Surg Glob Open ; 8(3): e2706, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32537359

RESUMEN

Cancer patients often require radiotherapy (RTx) to enhance their survival. Unfortunately, RTx also damages nearby healthy non-cancer tissues, leading to progressive fibrotic soft-tissue injury, consisting of pain, contracture, tissue-breakdown, infection, and lymphoedema. Mechanisms underlying the clinically observed ability of fat grafting to ameliorate some of these effects, however, are poorly understood. It was hypothesized that RTx significantly alters fibroblast cell function and the paracrine secretome of adipose-derived stem cells (ADSC) may mitigate these changes. METHODS: To investigate cellular changes resulting in the fibrotic side-effects of RTx, cultured normal human dermal fibroblasts (NHDF) were irradiated (10Gy), then studied using functional assays that reflect key fibroblast functions, and compared with unirradiated controls. RNA-Seq and targeted microarrays (with specific examination of TGFß) were performed to elucidate altered gene pathways. Finally, conditioned-media from ADSC was used to treat irradiated fibroblasts and model fat graft surgery. RESULTS: RTx altered NHDF morphology, with cellular functional changes reflecting transition into a more invasive phenotype: increased migration, adhesion, contractility, and disordered invasion. Changes in genes regulating collagen and MMP homeostasis and cell-cycle progression were also detected. However, TGFß was not identified as a key intracellular regulator of the fibroblast response. Finally, treatment with ADSC-conditioned media reversed the RTx-induced hypermigratory state of NHDF. CONCLUSIONS: Our findings regarding cellular and molecular changes in irradiated fibroblasts help explain clinical manifestations of debilitating RTx-induced fibrosis. ADSC-secretome-mediated reversal indicated that these constituents may be used to combat the devastating side-effects of excessive unwanted fibrosis in RTx and other human fibrotic diseases.

10.
Front Pharmacol ; 11: 158, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194404

RESUMEN

Fat grafting is a well-established surgical technique used in plastic surgery to restore deficient tissue, and more recently, for its putative regenerative properties. Despite more frequent use of fat grafting, however, a scientific understanding of the mechanisms underlying either survival or remedial benefits of grafted fat remain lacking. Clinical use of fat grafts for breast reconstruction in tissues damaged by radiotherapy first provided clues regarding the clinical potential of stem cells to drive tissue regeneration. Healthy fat introduced into irradiated tissues appeared to reverse radiation injury (fibrosis, scarring, contracture and pain) clinically; a phenomenon since validated in several animal studies. In the quest to explain and enhance these therapeutic effects, adipose-derived stem cells (ADSCs) were suggested as playing a key role and techniques to enrich ADSCs in fat, in turn, followed. Stem cells - the body's rapid response 'road repair crew' - are on standby to combat tissue insults. ADSCs may exert influences either by releasing paracrine-signalling factors alone or as cell-free extracellular vesicles (EVs, exosomes). Alternatively, ADSCs may augment vital immune/inflammatory processes; or themselves differentiate into mature adipose cells to provide the 'building-blocks' for engineered tissue. Regardless, adipose tissue constitutes an ideal source for mesenchymal stem cells for therapeutic application, due to ease of harvest and processing; and a relative abundance of adipose tissue in most patients. Here, we review the clinical applications of fat grafting, ADSC-enhanced fat graft, fat stem cell therapy; and the latest evolution of EVs and nanoparticles in healing, cancer and neurodegenerative and multiorgan disease.

11.
Front Immunol ; 10: 518, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105685

RESUMEN

Chemokines are a family of small protein cytokines that act as chemoattractants to migrating cells, in particular those of the immune system. They are categorized functionally as either homeostatic, constitutively produced by tissues for basal levels of cell migration, or inflammatory, where they are generated in association with a pathological inflammatory response. While the extravasation of leukocytes via blood vessels is a key step in cells entering the tissues, the lymphatic vessels also serve as a conduit for cells that are recruited and localized through chemoattractant gradients. Furthermore, the growth and remodeling of lymphatic vessels in pathologies is influenced by chemokines and their receptors expressed by lymphatic endothelial cells (LECs) in and around the pathological tissue. In this review we summarize the diverse role played by specific chemokines and their receptors in shaping the interaction of lymphatic vessels, immune cells, and other pathological cell types in physiology and disease.


Asunto(s)
Quimiocinas/inmunología , Vasos Linfáticos/inmunología , Animales , Citocinas/inmunología , Células Endoteliales/inmunología , Humanos , Inflamación/inmunología
12.
Cancer Res ; 79(7): 1558-1572, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30709930

RESUMEN

Metastasis via the lymphatic vasculature is an important step in cancer progression. The formation of new lymphatic vessels (lymphangiogenesis), or remodeling of existing lymphatics, is thought to facilitate the entry and transport of tumor cells into lymphatic vessels and on to distant organs. The migration of lymphatic endothelial cells (LEC) toward guidance cues is critical for lymphangiogenesis. While chemokines are known to provide directional navigation for migrating immune cells, their role in mediating LEC migration during tumor-associated lymphangiogenesis is not well defined. Here, we undertook gene profiling studies to identify chemokine-chemokine receptor pairs that are involved in tumor lymphangiogenesis associated with lymph node metastasis. CCL27 and CCL28 were expressed in tumor cells with metastatic potential, while their cognate receptor, CCR10, was expressed by LECs and upregulated by the lymphangiogenic growth factor VEGFD and the proinflammatory cytokine TNFα. Migration assays demonstrated that LECs are attracted to both CCL27 and CCL28 in a CCR10-dependent manner, while abnormal lymphatic vessel patterning in CCR10-deficient mice confirmed the significant role of CCR10 in lymphatic patterning. In vivo analyses showed that LECs are recruited to a CCL27 or CCL28 source, while VEGFD was required in combination with these chemokines to enable formation of coherent lymphatic vessels. Moreover, tumor xenograft experiments demonstrated that even though CCL27 expression by tumors enhanced LEC recruitment, the ability to metastasize was dependent on the expression of VEGFD. These studies demonstrate that CCL27 and CCL28 signaling through CCR10 may cooperate with inflammatory mediators and VEGFD during tumor lymphangiogenesis. SIGNIFICANCE: The study shows that the remodeling of lymphatic vessels in cancer is influenced by CCL27 and CCL28 chemokines, which may provide a future target to modulate metastatic spread.


Asunto(s)
Movimiento Celular , Quimiocinas CC/metabolismo , Células Endoteliales/citología , Vasos Linfáticos/citología , Transducción de Señal , Animales , Femenino , Humanos , Ligandos , Linfangiogénesis , Metástasis Linfática , Ratones , Ratones Endogámicos NOD , Ratones SCID
13.
Sci Rep ; 8(1): 1579, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29371689

RESUMEN

The benefits of adult stem cells for repair of the heart have been attributed to the repertoire of salutary paracrine activities they appear to exert. We previously isolated human W8B2+ cardiac stem cells (CSCs) and found they powerfully influence cardiomyocytes and endothelial cells to collectively promote cardiac repair and regeneration. Here, the complexity of the W8B2+ CSC secretomes was characterised and examined in more detail. Using ion exchange chromatography to separate soluble proteins based on their net surface charge, the secreted factors responsible for the pro-survival activity of W8B2+ CSCs were found within the low and medium cation fractions. In addition to the soluble proteins, extracellular vesicles generated from W8B2+ CSCs not only exhibited pro-survival and pro-angiogenic activities, but also promoted proliferation of neonatal cardiomyocytes. These extracellular vesicles contain a cargo of proteins, mRNA and primary microRNA precursors that are enriched in exosomes and are capable of modulating collectively many of the cellular pathways involved in protein metabolism, cell growth, as well as cellular responses to stress and organisation of the extracellular matrix. Thus the W8B2+ CSC secretome contains a multitude of bioactive paracrine factors we have now characterised, that might well be harnessed for therapeutic application for cardiac repair and regeneration.


Asunto(s)
Células Madre Adultas/metabolismo , Factores Biológicos/metabolismo , Vesículas Extracelulares/química , MicroARNs/metabolismo , Proteínas/metabolismo , ARN Mensajero/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cromatografía por Intercambio Iónico , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Ratas
14.
Sci Signal ; 10(499)2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28974649

RESUMEN

Lymphatic vessels constitute a specialized vasculature that is involved in development, cancer, obesity, and immune regulation. The migration of lymphatic endothelial cells (LECs) is critical for vessel growth (lymphangiogenesis) and vessel remodeling, processes that modify the lymphatic network in response to developmental or pathological demands. Using the publicly accessible results of our genome-wide siRNA screen, we characterized the migratome of primary human LECs and identified individual genes and signaling pathways that regulate LEC migration. We compared our data set with mRNA differential expression data from endothelial and stromal cells derived from two in vivo models of lymphatic vessel remodeling, viral infection and contact hypersensitivity-induced inflammation, which identified genes selectively involved in regulating LEC migration and remodeling. We also characterized the top candidates in the LEC migratome in primary blood vascular endothelial cells to identify genes with functions common to lymphatic and blood vascular endothelium. On the basis of these analyses, we showed that LGALS1, which encodes the glycan-binding protein Galectin-1, promoted lymphatic vascular growth in vitro and in vivo and contributed to maintenance of the lymphatic endothelial phenotype. Our results provide insight into the signaling networks that control lymphangiogenesis and lymphatic remodeling and potentially identify therapeutic targets and biomarkers in disease specific to lymphatic or blood vessels.


Asunto(s)
Movimiento Celular/fisiología , Células Endoteliales/metabolismo , Transducción de Señal/fisiología , Células Endoteliales/citología , Galectina 1/genética , Galectina 1/metabolismo , Estudio de Asociación del Genoma Completo , Humanos
15.
Sci Data ; 4: 170009, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28248931

RESUMEN

Many cell types undergo migration during embryogenesis and disease. Endothelial cells line blood vessels and lymphatics, which migrate during development as part of angiogenesis, lymphangiogenesis and other types of vessel remodelling. These processes are also important in wound healing, cancer metastasis and cardiovascular conditions. However, the molecular control of endothelial cell migration is poorly understood. Here, we present a dataset containing siRNA screens that identify known and novel components of signalling pathways regulating migration of lymphatic endothelial cells. These components are compared to signalling in blood vascular endothelial cells. Further, using high-content microscopy, we captured a dataset of images of migrating cells following transfection with a genome-wide siRNA library. These datasets are suitable for the identification and analysis of genes involved in endothelial cell migration and morphology, and for computational approaches to identify signalling networks controlling the migratory response and integration of cell morphology, gene function and cell signaling. This may facilitate identification of protein targets for therapeutically modulating angiogenesis and lymphangiogenesis in the context of human disease.


Asunto(s)
Movimiento Celular , Células Endoteliales , Proliferación Celular , Humanos , Interferencia de ARN , ARN Interferente Pequeño
16.
Assay Drug Dev Technol ; 15(1): 30-43, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28092460

RESUMEN

The lymphatic system is a series of vessels that transport cells and excess fluid from tissues to the blood vascular system. Normally quiescent, the lymphatics can grow or remodel in response to developmental, immunological, or cells pathological stimuli. Lymphatic vessels comprise lymphatic endothelial cells (LECs) that can respond to external growth factors by undergoing proliferation, migration, adhesion, and tube and lumen formation into new vessel structures, a process known as lymphangiogenesis. To understand the key gene and signaling pathways necessary for lymphangiogenesis and lymphatic vessel remodeling, we have developed a three-dimensional LEC tube formation assay to explore the role of kinase signaling in these processes. The collagen-overlay-based assay was used with primary human adult dermal LECs to investigate a library of 60 tyrosine kinase (TK) and TK-like genes by siRNA knockdown. Nine candidate genes were identified and characterized for their ability to modify key parameters of lymphatic tube formation, including tube length, area, thickness, branching, and number of blind-ended sacs. Four genes-ZAP70, IRAK4, RIPK1, and RIPK2-were identified as high-confidence hits after tertiary deconvolution screens and demonstrate the utility of the assay to define LEC genes critical for the formation of tube structures. This assay facilitates the identification of potential molecular targets for novel drugs designed to modulate the remodeling of lymphatics that is important for the metastatic spread of cancer and other pathologies.


Asunto(s)
Células Endoteliales/fisiología , Linfangiogénesis/fisiología , Vasos Linfáticos/citología , Vasos Linfáticos/fisiología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/biosíntesis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Técnicas de Cultivo de Célula , Células Endoteliales/química , Células Endoteliales de la Vena Umbilical Humana/química , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Vasos Linfáticos/química , ARN Interferente Pequeño/fisiología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/análisis
17.
J Biol Chem ; 291(53): 27265-27278, 2016 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-27852824

RESUMEN

VEGF-C and VEGF-D are secreted glycoproteins that induce angiogenesis and lymphangiogenesis in cancer, thereby promoting tumor growth and spread. They exhibit structural homology and activate VEGFR-2 and VEGFR-3, receptors on endothelial cells that signal for growth of blood vessels and lymphatics. VEGF-C and VEGF-D were thought to exhibit similar bioactivities, yet recent studies indicated distinct signaling mechanisms (e.g. tumor-derived VEGF-C promoted expression of the prostaglandin biosynthetic enzyme COX-2 in lymphatics, a response thought to facilitate metastasis via the lymphatic vasculature, whereas VEGF-D did not). Here we explore the basis of the distinct bioactivities of VEGF-D using a neutralizing antibody, peptide mapping, and mutagenesis to demonstrate that the N-terminal α-helix of mature VEGF-D (Phe93-Arg108) is critical for binding VEGFR-2 and VEGFR-3. Importantly, the N-terminal part of this α-helix, from Phe93 to Thr98, is required for binding VEGFR-3 but not VEGFR-2. Surprisingly, the corresponding part of the α-helix in mature VEGF-C did not influence binding to either VEGFR-2 or VEGFR-3, indicating distinct determinants of receptor binding by these growth factors. A variant of mature VEGF-D harboring a mutation in the N-terminal α-helix, D103A, exhibited enhanced potency for activating VEGFR-3, was able to promote increased COX-2 mRNA levels in lymphatic endothelial cells, and had enhanced capacity to induce lymphatic sprouting in vivo This mutant may be useful for developing protein-based therapeutics to drive lymphangiogenesis in clinical settings, such as lymphedema. Our studies shed light on the VEGF-D structure/function relationship and provide a basis for understanding functional differences compared with VEGF-C.


Asunto(s)
Endotelio Vascular/patología , Linfangiogénesis , Vasos Linfáticos/patología , Neovascularización Patológica/patología , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor D de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Anticuerpos Neutralizantes , Células Cultivadas , Dermis/metabolismo , Dermis/patología , Endotelio Vascular/metabolismo , Femenino , Humanos , Vasos Linfáticos/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Mutagénesis Sitio-Dirigida , Mutación/genética , Neovascularización Patológica/metabolismo , Transducción de Señal , Factor C de Crecimiento Endotelial Vascular/química , Factor C de Crecimiento Endotelial Vascular/genética , Factor D de Crecimiento Endotelial Vascular/química , Factor D de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética
18.
Nat Commun ; 7: 10634, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26925549

RESUMEN

Chronic stress induces signalling from the sympathetic nervous system (SNS) and drives cancer progression, although the pathways of tumour cell dissemination are unclear. Here we show that chronic stress restructures lymphatic networks within and around tumours to provide pathways for tumour cell escape. We show that VEGFC derived from tumour cells is required for stress to induce lymphatic remodelling and that this depends on COX2 inflammatory signalling from macrophages. Pharmacological inhibition of SNS signalling blocks the effect of chronic stress on lymphatic remodelling in vivo and reduces lymphatic metastasis in preclinical cancer models and in patients with breast cancer. These findings reveal unanticipated communication between stress-induced neural signalling and inflammation, which regulates tumour lymphatic architecture and lymphogenous tumour cell dissemination. These findings suggest that limiting the effects of SNS signalling to prevent tumour cell dissemination through lymphatic routes may provide a strategy to improve cancer outcomes.


Asunto(s)
Sistema Linfático/fisiología , Neoplasias/metabolismo , Neoplasias/patología , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular , Enfermedad Crónica , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Experimentales , Transducción de Señal/fisiología , Estrés Fisiológico , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo
19.
Nat Rev Cancer ; 14(3): 159-72, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24561443

RESUMEN

The generation of new lymphatic vessels through lymphangiogenesis and the remodelling of existing lymphatics are thought to be important steps in cancer metastasis. The past decade has been exciting in terms of research into the molecular and cellular biology of lymphatic vessels in cancer, and it has been shown that the molecular control of tumour lymphangiogenesis has similarities to that of tumour angiogenesis. Nevertheless, there are significant mechanistic differences between these biological processes. We are now developing a greater understanding of the specific roles of distinct lymphatic vessel subtypes in cancer, and this provides opportunities to improve diagnostic and therapeutic approaches that aim to restrict the progression of cancer.


Asunto(s)
Linfangiogénesis , Vasos Linfáticos/fisiopatología , Neoplasias/fisiopatología , Animales , Humanos , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica
20.
Hum Mol Genet ; 23(5): 1286-97, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24163130

RESUMEN

Mutations in SOX18, VEGFC and Vascular Endothelial Growth Factor 3 underlie the hereditary lymphatic disorders hypotrichosis-lymphedema-telangiectasia (HLT), Milroy-like lymphedema and Milroy disease, respectively. Genes responsible for hereditary lymphedema are key regulators of lymphatic vascular development in the embryo. To identify novel modulators of lymphangiogenesis, we used a mouse model of HLT (Ragged Opossum) and performed gene expression profiling of aberrant dermal lymphatic vessels. Expression studies and functional analysis in zebrafish and mice revealed one candidate, ArfGAP with RhoGAP domain, Ankyrin repeat and PH domain 3 (ARAP3), which is down-regulated in HLT mouse lymphatic vessels and necessary for lymphatic vascular development in mice and zebrafish. We position this known regulator of cell behaviour during migration as a mediator of the cellular response to Vegfc signalling in lymphatic endothelial cells in vitro and in vivo. Our data refine common mechanisms that are likely to contribute during both development and the pathogenesis of lymphatic vascular disorders.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Activadoras de GTPasa/genética , Regulación de la Expresión Génica , Hipotricosis/genética , Linfangiogénesis/genética , Linfedema/genética , Telangiectasia/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Movimiento Celular/genética , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Femenino , Proteínas Activadoras de GTPasa/metabolismo , Vasos Linfáticos/metabolismo , Ratones , Ratones Noqueados , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Síndrome , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...